A family of ammonium transporters in Saccharomyces cerevisiae.
نویسندگان
چکیده
Ammonium is a nitrogen source supporting growth of yeast cells at an optimal rate. We recently reported the first characterization of an NH4+ transport protein (Mep1p) in Saccharomyces cerevisiae. Here we describe the characterization of two additional NH4+ transporters, Mep2p and Mep3p, both of which are highly similar to Mep1p. The Mep2 protein displays the highest affinity for NH4+ (Km, 1 to 2 microM), followed closely by Mep1p (Km, 5 to 10 microM) and finally by Mep3p, whose affinity is much lower (Km, approximately 1.4 to 2.1 mM). A strain lacking all three MEP genes cannot grow on media containing less than 5 mM NH4+ as the sole nitrogen source, while the presence of individual NH4+ transporters enables growth on these media. Yet, the three Mep proteins are not essential for growth on NH4+ at high concentrations (>20 mM). Feeding experiments further indicate that the Mep transporters are also required to retain NH4+ inside cells during growth on at least some nitrogen sources other than NH4+. The MEP genes are subject to nitrogen control. In the presence of a good nitrogen source, all three MEP genes are repressed. On a poor nitrogen source, MEP2 expression is much higher than MEP1 and MEP3 expression. High-level MEP2 transcription requires at least one of the two GATA family factors Gln3p and Nil1p, which are involved in transcriptional activation of many other nitrogen-regulated genes. In contrast, expression of either MEP1 or MEP3 requires only Gln3p and is unexpectedly down-regulated in a Nil1p-dependent manner. Analysis of databases suggests that families of NH4+ transporters exist in other organisms as well.
منابع مشابه
Characterization of Phosphate Membrane Transport in Saccharomyces cerevisiae CEN.PK113-5D under Low-Phosphate Conditions Using Aerobic Continuous Culture
Two different growth media, namely complex and defined media, were used to examine establishment of steady-state conditions in phosphate-limited culture system of Saccharomyces cerevisiae CEN.PK113-5D strain. Using the defined growth medium, it was possible to obtain steady state condition in the continuous culture. The effect of phosphate concentration on the growth of S. cerevisiae in pho...
متن کاملStructural basis for Mep2 ammonium transceptor activation by phosphorylation.
Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the t...
متن کاملEffects of Saccharomyces cerevisiae on survival rate and growth performance of Convict Cichlid (Amatitlania nigrofasciata)
Using probiotics can control pathogens by a variety of mechanisms. Probiotics can promote growth performance and have, therefore, become increasingly important in the aquaculture industry. Convict Cichlid belongs to the family of Cichlidae and is known for its rapid development in laboratory conditions and is suitable for behavioral examinations. The aim of this study was to evaluate the effect...
متن کاملSaccharomyces Cerevisiae as a Biocatalyst for Different Carbonyl Group under Green Condition
In this researchsaccharomyces cerevisiae (baker’s yeast) was used as a cheap, readily accessible, selective, efficient, and green bio-catalyst in a chemo selective reduction of carbonyl group to hydroxyl group. In this green procedure three substrates e.g. (3-(3-nitrophenyl)aziridin-2-yl)-1-phenyl-methanone, pyruvate ester, and 2-acetyl-γ-butyrolactone were r...
متن کاملA glucose transporter chimera confers a dominant negative glucose starvation phenotype in Saccharomyces cerevisiae.
A family of glucose transporters mediates glucose uptake in Saccharomyces cerevisiae. We show that the dominant mutation GSF4-1, which impairs glucose repression of SUC2, results in a nonfunctional chimera of the transporters Hxt1p and Hxt4p. Hxt1/4p inhibits the function of wild-type glucose transporters. Similar mutations may facilitate analysis of the major facilitator superfamily.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 17 8 شماره
صفحات -
تاریخ انتشار 1997